-
Notifications
You must be signed in to change notification settings - Fork 4.8k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
CheapPower module #22529
base: development
Are you sure you want to change the base?
CheapPower module #22529
Conversation
Thanks. Is it valid only for Finland? If so, I believe it should show in the name of the file like "cheap_power_Finland" |
The current version is useful only for Finland, but it could be fairly easily extended to cover at least the entire Nord pool area. The data is produced by ENTSO-E, which based on https://transparency.entsoe.eu/load-domain/r2/totalLoadR2/show seems to cover most of Europe, including Türkiye and Ukraine. Some of these countries might not implement dynamic pricing for end consumers yet, but I believe that it will come. Ideally, someone would run a public service that is based on some code like https://github.com/oysteinjakobsen/fetch-day-ahead-price or https://github.com/JaccoR/hass-entso-e so that end users can save themselves the trouble of registering and configuring an API key with ENTSO-E. Besides, this API could be too resource intensive to implement in Tasmota. The hypothetical service would deliver the known prices starting from the currently active slot in a uniform format. The command would take a parameter to the command to specify the price area (such as an area of Norway):
This could be translated into a simple URL like The second parameter could also be a full URL, for example pointing to server in the LAN, which could run an ENTSO-E interface and cache to serve multiple devices. This would in no means be limited to ENTSO-E or Europe. Another thinkable enhancement would be a third parameter to specify the desired number of slots to choose per day, like this:
Some heating could need to run for multiple hours per day. There are some plans to narrow the price slots from 60 to 15 minutes in the future. In that case, even my deployment would require 2 to 4 such slots per day. A quick search turned up some further open JSON data sources:
These could be implemented fairly easily, after asking the operators if this kind of automated access is okay with them. The format of the URL and the data would likely vary between any area-specific JSON data sources. I realize that to reduce the memory footprint, it could make sense to split this interface into separate modules that would be loaded on demand. For Estonia, I only found https://elektrihind.ee/borsihind/ which does not seem to include any public JSON based interface. The German Fraunhofer-Institut für Solare Energiesysteme is running https://energy-charts.info/charts/price_spot_market/chart.htm with a nice country selection, but apparently without any raw data interface that is suitable for this kind of use. There is a CSV export function that seems to spit out data for the current week. I think that this needs to start somewhere. If it helps, I can make the country parameter mandatory in the first version, and reject anything else than |
I was in contact with the provider of the Swedish price data, and now there is a simpler URL https://mgrey.se/espot?format=json&domain=SE1&date=2024-12-13 that will return the price for a single zone for the given day. Unfortunately, when I tried accessing this HTTPS server in the Berry console of Tasmota 14.1.0, I got an error, I suppose due to some TLS or SSL incompatibility. It is not possible to enable plain HTTP support on this server. I could make the URL pattern configurable, so that this service could be reached via (say) |
Hmmm. I probed
I will evaluate the impact of supporting |
Please try with the latest version which includes #22649 I have now enabled ECDSA: wc = webclient()
print(wc.begin('https://mgrey.se/espot?format=json&domain=SE1&date=2024-12-13'))
print(wc.GET())
print(wc.get_string())
print(wc.close()) Output shows:
|
Thank you a lot, @s-hadinger! I upgraded to a development snapshot (b3b9699 is 1 commit ahead of the merge 615c676 of #22649):
I am glad to see that also sahkotin.fi now is accessible with https. My upcoming update will revise that URL as well. |
FTR, most example projects with Tasmota+Berry are published on Github repositories owned by the creator. I've collected a list of repositories including Berry code: |
That URL is timing out for me. Yes, I was uncertain if this would be the appropriate place. I was expecting to a link to a package directory at https://tasmota.github.io/docs/Tasmota-Application/. I spent quite a bit of time debugging today, trying to figure out what I am doing wrong when implementing support for a second data source. It turns out that the problem is directly caused by switching As soon as I change the code to use Unfortunately, there is no serial console connection to my only Tasmota equipped device, so I’m afraid I am unable to debug this deeper. When I was experimenting with the Berry console, it seemed that var data = json.load(wc.get_string())
wc.close() could run out of memory (end up with var data = wc.get_string()
wc.close()
data = json.load(data) might allow the Berry garbage collector to free some memory earlier. However, when I tried to revise the program like this, it would still not work (cause the device to be reset or to lose the WLAN connection). I would appreciate it if you could check if the anomaly is reproducible for you. |
With the URL above Once loaded the JSON takes 3.5KB which is not huge but still significant |
Well, of course using I had no trouble getting past the point of fetching the data, using: My test was using a recent build of tasmota 14.4.1.1 (a bit newer than yours), on an ESP32-S3 with PSRAM available. Switching to an ESP32-C3 with less RAM (and no PSRAM) made no difference, it still had no trouble https-fetching the data. While deferring the Of course, not knowing or replicating your test case, I can't be sure if my test got far enough for whatever issue you had. In general, I like to reduce scope of test cases to "zoom in". As long as I can prune to code to be shorter I know that errors still occurring has to be within what's left. |
I had tried to add several I will try to narrow down this "test case" for reproducing the anomaly. That will take a few days, though. I think I should use an |
Print goes nowhere |
Of course, If the failure is first time in a code path, you could also create a runtime error at a certain point in the code, if you get that, you know that it was safe that far. If the failure is not first time in the code path, it might be a memory leak, which you can check by following free memory. If it keeps depleting, something is rotten..... |
I think that this anomaly will occur on the first time after restart or reboot. Which Berry code would you recommend for injecting a runtime error? |
The Berry language does allow such: |
Sorry |
I debugged this a little. I removed the --- tasmota/berry/modules/cheap_power/cheap_power.be 2024-12-15 21:00:30.860176636 +0200
+++ tasmota/berry/modules/cheap_power/cp.be 2024-12-24 09:25:48.127720826 +0200
@@ -1,9 +1,6 @@
import webserver
import json
-var cheap_power = module("cheap_power")
-
-cheap_power.init = def (m)
class CheapPower
var prices # future prices for up to 48 hours
var times # start times of the prices
@@ -20,7 +17,7 @@
"<td style='width:25%'><button onclick='la(\"&op=2\");'>🔄</button></td>"
"<td style='width:25%'><button onclick='la(\"&op=3\");'>⏭</button></td>"
"</tr></table>"
- static var URL0 = 'http://sahkotin.fi/prices?start=', URL1 = '&end='
+ static var URL0 = 'https://sahkotin.fi/prices?start=', URL1 = '&end='
static var URLTIME = '%Y-%m-%dT%H:00:00.000Z'
def init()
@@ -29,15 +26,9 @@
end
def start(idx)
- if idx == nil || idx < 1 || idx > tasmota.global.devices_present
- tasmota.log(f"CheapPower{idx} is not a valid Power output")
- tasmota.resp_cmnd_failed()
- else
self.channel = idx - 1
tasmota.add_driver(self)
self.update()
- tasmota.resp_cmnd_done()
- end
end
def power(on) tasmota.set_power(self.channel, on) end
@@ -45,9 +36,8 @@
# fetch the prices for the next 24 to 48 hours
def update()
var wc = webclient()
- var rtc = tasmota.rtc()
- self.tz = rtc['timezone'] * 60
- var now = rtc['utc']
+ self.tz = 120 * 60
+ var now = 1734822000
var url = self.URL0 +
tasmota.strftime(self.URLTIME, now) + self.URL1 +
tasmota.strftime(self.URLTIME, now + 172800)
@@ -149,6 +139,6 @@
tasmota.web_send_decimal(status)
end
end
-return CheapPower()
-end
-return cheap_power
+var cheap_power = CheapPower()
+cheap_power.start(1)
+print(cheap_power.chosen) Right after rebooting the Shelly Pro 2 into Tasmota 14.4.0.1 (b3b9699-tasmota32), when I input the code with the above modification to the Berry Console, the To my surprise, the code would run just fine, even though I’m now using |
AFAICT, the "culprit" was the call hierarchy of
The thing is that issuing commands can be quite problematic when being invoked from an existing Tasmota core-related callback (especially a command callback), and In many cases, you can use a workaround of breaking the command hierarchy, using something like |
@sfromis Thank you for the advice; I will try that. I was thinking of For the record, f7fc732 is my current development, implementing an interface for Swedish prices. With Edit: Yes, it was this simple. Great! diff --git a/tasmota/berry/modules/cheap_power/cheap_power.be b/tasmota/berry/modules/cheap_power/cheap_power.be
index 238fa733a..42b4c531d 100644
--- a/tasmota/berry/modules/cheap_power/cheap_power.be
+++ b/tasmota/berry/modules/cheap_power/cheap_power.be
@@ -42,7 +42,7 @@ class CheapPower
if !payload
tasmota.log(f"CheapPower{idx}: a price zone name is expected")
elif payload == 'FI'
- self.p_url = 'http://sahkotin.fi/prices?start='
+ self.p_url = 'https://sahkotin.fi/prices?start='
self.p_kWh = '¢'
elif re.match('^SE[1-4]$', payload)
self.p_url = 'https://mgrey.se/espot?format=json&domain=' + payload +
@@ -58,7 +58,7 @@ class CheapPower
self.channel = idx - 1
self.p_zone = payload
tasmota.add_driver(self)
- self.update()
+ tasmota.set_timer(0, /->self.update())
tasmota.resp_cmnd_done()
end
|
This fetches electricity prices and chooses the cheapest future time slot. Currently, the only data sources are the Nordpool prices, as provided by ENTSO-E and https://sahkotin.fi (FI) and https://mgrey.se/espot (price zones SE1 through SE4). To use: * copy cheap_power.tapp to the file system * Invoke the Tasmota command CheapPower1 FI, CheapPower2 SE2, … to * download prices for the next 24 to 48 hours * automatically choose the cheapest future time slot * to schedule Power1 ON, Power2 ON, … at the chosen slot * to install a Web UI in the main menu * For a full installation, you will want something like the following: ``` Backlog0 Timezone 99; TimeStd 0,0,10,1,4,120; TimeDst 0,0,3,1,3,180 Backlog0 SwitchMode1 15; SwitchTopic1 0 Backlog0 WebButton1 boiler; WebButton2 heat PulseTime1 3700 Rule1 ON Clock#Timer DO CheapPower1 FI ENDON Timer {"Enable":1,"Mode":0,"Time":"18:00","Window":0,"Days":"1111111","Repeat":1,"Output":1,"Action":3} Rule1 1 Timers 1 ``` The download schedule can be adjusted in the timer configuration menu. The prices for the next day will typically be updated in the afternoon or evening of the previous day. For the SE data source, prices are currently fetched only for one day (the current day) at a time and they are assumed to be in the local time zone. In case the prices cannot be downloaded, the download will be retried in 1, 2, 4, 8, 16, 32, 64, 64, 64, … minutes until it succeeds. The user interface in the main menu consists of 4 buttons: ⏮ moves to the previous time slot (or wraps from the first to the last) ⏯ pauses (switches off) or chooses the optimal slot 🔄 requests the prices to be downloaded and the optimal slot to be chosen ⏭ moves to the next time slot (or wraps from the last to the first) The status output above the buttons may also indicate that the output is paused until further command or price update: ⭘ It may also indicate the start time and the price of the slot: ⭙ 2024-11-22 21:00 12.8 ¢ I am using this for controlling a 3×2kW warm water boiler. For my usage, 1 hour every 24 or 48 hours is sufficient.
Description:
This fetches electricity prices and chooses the cheapest future time slot. Currently, the only data sources are the Nordpool prices, as provided by ENTSO-E and https://sahkotin.fi (FI) and https://mgrey.se/espot (price zones SE1 through SE4). To use:
CheapPower1 FI
,CheapPower2 SE2
, … toPower1 ON
,Power2 ON
, … at the chosen slotThe download schedule can be adjusted in the timer configuration menu. The prices for the next day will typically be updated in the afternoon or evening of the previous day.
For the SE data source, prices are currently fetched only for one day (the current day) at a time and they are assumed to be in the local time zone.
In case the prices cannot be downloaded, the download will be retried in 1, 2, 4, 8, 16, 32, 64, 64, 64, … minutes until it succeeds.
The user interface in the main menu consists of 4 buttons: ⏮ moves to the previous time slot (or wraps from the first to the last) ⏯ pauses (switches off) or chooses the optimal slot 🔄 requests the prices to be downloaded and the optimal slot to be chosen ⏭ moves to the next time slot (or wraps from the last to the first)
The status output above the buttons may also indicate that the output is paused until further command or price update:
⭘
It may also indicate the start time and the price of the slot:
⭙ 2024-11-22 21:00 12.8 ¢
I am using this for controlling a 3×2kW warm water boiler. For my usage, 1 hour every 24 or 48 hours is sufficient.
Checklist: